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Abstract 
We describe a a portable container which  allows specification of the 

probabilistic relations between  several  variables. The applications mo- 
tivating this work are mainly  scientific  inference  problems. The textual 
container should allow users (scientists) to maintain, annotate,  edit, and 
exchange definite models of their data. These specification documents can 
also be interpreted by inference  engines that can automatically infer  vari- 
ables when  given the values of other variables. The specification  allows 
hierarchical composition of variables, permitting construction of complex 
and versatile models from simple  ones. Furthermore, special constructs 
allow  easier description of temporal and spatial patterns of dependence 
between random variables. 

1 Analytic  foundation 
As stated above, our goal  is to design an expressive language for capturing 
stochastic or uncertain relations among a set of variables, particularly in support 
of the inference tasks associated with pattern recognition in scientific data. At 
a minimum, we need to be able to describe random vectors via a set of standard 
distributions,  and allow transformations  and compositions of these variables. 
For example, a normal mixture is a composition of a discrete random variable 
with a group of different normal variables. 

One guide to  this work has been the recent maturity of Bayes net  methods 
for describing data  (Pearl, 1988). This well-known  formalism represents  random 
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variables as the vertices of a directed graph. Lack of an edge between two 
vertices 1’1 and 212 implies a conditional independence relationship between VI 

and 212 given the rest of the variables. Our baseline required capability is easy 
to capture in this  notation;  furthermore, many pattern recognition tasks such 
as inference in hidden Markov  models or Markov random field models may be 
captured in this notation. 

A parallel line of  work is in the  area of stochastic grammars (F’u, 1974) 
and  pattern  theory  (Grenander, 1993). Such grammars model random variables 
via randomly chosen production rules, and, properly extended, can be a more 
expressive notation for capturing  pattern generation processes (Mjolsness, 1995). 

A following  influence,  allowing us to concisely capture  spatio-temporal rela- 
tions, is to describe a collection of random variables as a field over a suitable 
index set or domain. The best example of a domain is the first n integers Z,, 
and  its cyclic version Z/Zn. The usual set-theoretic operators  are  permitted 
on domains, which  allows building index sets for  images via Cartesian products. 
The field is then a map from the domain to Rd, and generalizes the concept 
of random  vector. Local spatio-temporal dependences may now be specified by 
translating a template over the domain. 

2 Implementation 
There  are two  basic operations connected with such a stochastic model: sam- 
pling, and finding the probability (or probability density) of a given set of vari- 
ables. This means the setup is amenable to  an object-oriented design  in  which 
variables are  the objects  supporting  these two methods. Access to  the model is 
given by specifying its URI and giving the names of the variables to be sam- 
pled, or the variable names and values if the probability is to be computed. 
As the “back-end” to this system, we have written a library  supporting  these 
operations,  suitable for  linking with applications needing to evaluate models. 
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Figure 2: SoHO/MDI observables, and data model 

The "front-end" must support browsing and editing. Although many tex- 
tual representations can  capture  the above structures, we have chosen XML, 
the emerging extensible  Markup Language standard. Using  XML  allows us to 
use  off-the-shelf parsers to assist the  computational engine, as well as standard 
editors to form the side visible to scientific users. Figure 2 shows one such edit- 
ing interface, called JUMBO, with a  mixture model  from a science application 
highlighted. The model  is a set of three variables, each a normal mixture in two 
dimensions. The variables are encoded, as described above, as a composition of 
a discrete distribution  and several normal distributions. 

3 Applications 
We describe two applications of this  system, the first to solar image analysis and 
the second to clustering of genetic expression data.  In  the solar image analysis 
problem, we observe images of the  sun  in several modalities, and from these 
images, we wish to segment the solar disk into region types to explore the links 
between solar activity  and climatic variability. 

Many sets of such images are available. The set we describe here consists 
of magnetograms and photograms of size 10242 taken since 1996 from the MDI 
(Michelson Doppler Imager) instrument aboard  the ESA/NASA SoHO satellite. 
The initial modeling problem is  simply to define the statistical  distribution of the 
vector y of two observables for the three region types: sunspot, faculae, and quiet 
sun. We have done this by fitting a normal  mixture to distributions of pixels 
in scientist-labeled images, obtaining models for P ( y  I spot), etc. See  figure 2 
for a scatterplot of observations y,  coded by  region type,  and a corresponding 
mixture for the sunspot model.  Models  for all the classes  may  be conveniently 
encoded using the XML scheme we have described. It is precisely such  a model 
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which is displayed in figure 1. 
We have developed a GUI-driven system called StarTool for this  type of 

image labeling (Turmon et al. , 1997). Currently, the system accepts XML 
probability models which its engine uses to produce labelings of single images, 
and timeseries of labelings of many images.  Because of the editing  capability 
described above, it is easy to allow scientists to browse and  edit the XML 
model-files  from within the same GUI. This system has the clear advantage 
that for scientific analysis, models of great complexity can be exchanged between 
scientists for analysis of images  from other  instruments, allowing repeatability 
and  objectivity of imagelabelings once a modeling consensus forms in the solar 
physics community. The next problem is to concisely express a Markov random 
field prior model to account for the spatial dimension, as outlined above. 

The second application is .in genetic expression determination (Mjolsness 
(1999)). Here each observable is a measurement of the activity or ‘expression’ 
of a certain gene of the nematode worm C. ekgans in a given experiment. Each 
experiment in fact determines the activity of many genes, and a collective pic- 
ture of a gene’s behavior emerges as experiments are done over time for several 
worms. In the  data examined here, produced in Stuart Kim’s Stanford labora- 
tory, 1244 genes were examined over 68 experiments, and a type of hierarchical 
clustering was done in R68 to group similar genes. For this data,  it was found 
that a hierarchical mixture model is more informative about  the  data  than a flat 
mixture. Such a model is a finite mixture of normal mixtures, and therefore c a p  
tures information about variability at two scales within the gene  sequence. This 
type of model is again a natural  candidate for the hierarchical decompositions 
supported by our language. 
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